Renormalized self-intersection local time for sub-bifractional Brownian motion

نویسندگان

چکیده

Let SH,K = {SH,K(t), t ? 0} be a d?dimensional sub-bifractional Brownian motion with indices H (0, 1) and K (0,1]. Assuming d 2, as HKd < 1, we mainly prove that the renormalized self-intersection local time t0 s0 ?(SH,K(s) SH,K(r))drds E [?t0 ?s0 SH,K(r))drds] exists in L2, where ?(x) is Dirac delta function for x Rd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renormalized Self - Intersection Local Time for Fractional Brownian Motion

Let B H t be a d-dimensional fractional Brownian motion with Hurst parameter H ∈ (0, 1). Assume d ≥ 2. We prove that the renor-malized self-intersection local time ℓ = T 0 t 0 δ(B H t − B H s) ds dt − E T 0 t 0 δ(B H t − B H s) ds dt exists in L 2 if and only if H < 3/(2d), which generalizes the Varadhan renormalization theorem to any dimension and with any Hurst parameter. Motivated by a resul...

متن کامل

Regularity of Renormalized Self-intersection Local Time for Fractional Brownian Motion

Let B H t be a d-dimensional fractional Brownian motion with Hurst parameter H ∈ (0, 1). We study the regularity, in the sense of the Malliavin calculus, of the renormalized self-intersection local time ℓ = T 0 t 0 δ 0 (B H t − B H s)dsdt − E T 0 t 0 δ 0 (B H t − B H s)dsdt , where δ 0 is the Dirac delta function.

متن کامل

On the bifractional Brownian motion

This paper is devoted to analyze several properties of the bifractional Brownian motion introduced by Houdré and Villa. This process is a self-similar Gaussian process depending on two parameters H and K and it constitutes a natural generalization of the fractional Brownian motion (which is obtained for K = 1). We adopt the strategy of the stochastic calculus via regularization. Particular inte...

متن کامل

An Extension of Bifractional Brownian Motion

In this paper we introduce and study a self-similar Gaussian process that is the bifractional Brownian motion BH,K with parameters H ∈ (0, 1) and K ∈ (1, 2) such that HK ∈ (0, 1). A remarkable difference between the case K ∈ (0, 1) and our situation is that this process is a semimartingale when 2HK = 1.

متن کامل

Sample Path Properties of Bifractional Brownian Motion

Let B = { B(t), t ∈ R+ } be a bifractional Brownian motion in R. We prove that B is strongly locally nondeterministic. Applying this property and a stochastic integral representation of B , we establish Chung’s law of the iterated logarithm for B , as well as sharp Hölder conditions and tail probability estimates for the local times of B . We also consider the existence and the regularity of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2022

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2212023k